Metric characterizations of Euclidean spaces
نویسندگان
چکیده
منابع مشابه
Characterizations of Sobolev Inequalities on Metric Spaces
We present isocapacitary characterizations of Sobolev inequalities in very general metric measure spaces.
متن کاملCharacterizations of Compactness for Metric Spaces
Definition. Let X be a metric space with metric d. (a) A collection {G α } α∈A of open sets is called an open cover of X if every x ∈ X belongs to at least one of the G α , α ∈ A. An open cover is finite if the index set A is finite. (b) X is compact if every open cover of X contains a finite subcover. Definition. Let X be a metric space with metric d and let A ⊂ X. We say that A is a compact s...
متن کاملEuclidean Quotients of Finite Metric Spaces
This paper is devoted to the study of quotients of finite metric spaces. The basic type of question we ask is: Given a finite metric space M and α ≥ 1, what is the largest quotient of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for these questions, and prove that they exhibit phase transitions. We also study the analogous problem for embedings int...
متن کاملMetric Derivations on Euclidean and Non-euclidean Spaces
As introduced by Weaver, (metric) derivations extend the notion of differential operators on Euclidean spaces and provide a linear differentiation theory that is well-defined on all metric spaces with Borel measures. The main result of this paper is a rigidity theorem for measures on Euclidean spaces that support a maximal number of derivations. The proof relies substantially on ideas from geom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1973
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1973.48.11